Deterministic RNG Based on ¢cSHAKE and
KMAC

April 16, 2024

Abstract

This specification defines a simple deterministic random number gen-
erator (DRNG) which can be used to generate cryptographically secure
random bit strings for various use cases including symmetric and asym-
metric key generation services. The DRNG is based on either cSHAKE
or KECCAK Message Authentication Code (KMAC) and is intended to
support a wide range of applications and requirements, and is conservative
in its resource consumption. A reference implementation of the algorithm
is given with leancryptol

Contents

I D istic RNG Based SHAKE and KMAC 9

[1.1 c¢SHAKE-based Deterministic Random Number Generator (cSHAKE- |

[DRNG)|
[L1.T Notationl

I1.L1.2 Encoding|o

ding|

|L1.1.4 Generating One Block of Random Bit Stream|.

I1.1.5 Generating Random Bit Stream of Arbitrary Length| . . .

[L1.6 Rationalel oL

[1.2 KMAC-based Deterministic Random Number Generator (KMAC-

| DRNG)| . . o o
[[.2.1 Noftationl

T O i W W W w

11.2.2 Encoding|
[23 Seeding
[[.227 4 Generating One Block of Random Bit Stream|
I1.2.5 Generating Random Bit Stream of Arbitrary Length| . . .
[.2.6 Rationalel L.
1.3 Comparison coHAKE And KMAC DRNG|.

© 0000~ OO

List of Figures

https://leancrypto.org

1 Deterministic RNG Based on cSHAKE and
KMAC

A deterministic random number generator (DRNG), also called a pseudo-random
number generator (PRNG), is one of the pillars of cryptographic systems. Its
goal is to consume input data that is believed or defined to contain entropy and
to generate random bit streams from this seed that are indistinguishable from
perfect random numbers.

This specification defines a simple deterministic random number generator
(DRNG) which can be used to generate cryptographically secure random bit
strings named cSHAKE DRNG and KMAC DRNG, respectively. The DRNG is
based on the customizable extendable output functions of cSHAKE and KMAC
which in turn are based on the KECCAK algorithm as specified in [4].

The ¢SHAKE / KMAC algorithms are a customizable version of SHAKE
which in turn is based on KECCAK with its sponge construction of the absorb
phase and squeeze phase. The cSHAKE/KMAC DRNG uses the absorb phase
to insert the cSHAKE/KMAC DRNG key data believed to contain entropy. In
a second step, the KECCAK squeeze phase is applied to generate a random bit
stream of the size requested by the consumer. The KECCAK squeeze phase
generates a pseudorandom bit stream of the desired length. The number of
the output bits depend on the specific cryptographic algorithms for which the
random bit stream is needed.

The ¢SHAKE/KMAC key is generated with the seed operation that con-
sumes the currently used cSHAKE/KMAC key and the seed data with a cSHAKE /K-
MAC operation to generate a new cSHAKE/KMAC key. The use of the cSHAKE /K-
MAC operation to process seed data ensures that input data without a uni-
form distribution is converted into a cSHAKE/KMAC key to be uniformly dis-
tributed. This allows inserting seed data that only partially contains entropy,
including the insertion of nonces, personalization strings or other data in any
order the caller desires. Thus, the goal of the seed operation is to compress
the possibly dispersed entropy of the input data into a cryptographically strong
c¢SHAKE/KMAC key which is used to generate random bit streams from.

The DRNG state management applies the fast-key-erasure mechanism as
defined in [2] to ensure "backtracking resistance' in NIST terminology (also
called "forward secrecy"). To ensure a key is only used for a limited amount
of generated random bits, the fast-key-erasure mechanism is applied at least
after generating of twice the cSHAKE256/KMAXOF256 block size number of
random bits.

The state to be maintained for the life-time of the cSHAKE/KMAC DRNG
is only its key as the cSHAKE/KMAC operation is transient in nature.

The ¢SHAKE/KMAC DRNG conceptually is very similar to the extract and
expand approach of the HKDF algorithm specified in [3].

This specification is closely related to the specification [5], but was developed
independently. The proposal of cSHAKE and KMAC DRNG defined in this
document complies with the definition in [5] as well.

CC BY 4.0. Copyright (C) 2024 Stephan Miiller, All rights reserved. 2

1.1 c¢SHAKE-based Deterministic Random Number Gen-
erator (cCSHAKE-DRNG)

1.1.1 Notation

The ¢SHAKE-hash denotes the cSHAKE256 function [4]. The cSHAKE-hash
has 4 arguments: the main input bit string X, the requested output length L in
bits, a function-name bit string N, and an optional customization bit string S.

The inputs to the cSHAKE-hash function are specified with references to
these parameters.

1.1.2 Encoding

The encoding function is derived from [5] Appendix B to be compliant with this
specification.

Let |a|/8 €0, ...,84. T.e., the additional input « is a sequence of bytes, and it
is at most 84 bytes long. Then, the following encoding unambiguously encodes
the inputs while adding only a single byte of stretch:

encode(S,a,n) = (S || a || (n*85+ |a|/8)8)

where (...)g indicates an 8-bit (i.e., single-byte) encoding of a value in 0, 255.
Thus, |encode| = 8, i.e., the stretch is constantly one byte.

1.1.3 Seeding

cSHAKE-Seeding (K(N), seed, personalization string) ->
K(N + 1)

Inputs:

e K(N): The current cSHAKE DRNG key used by the current instance of
the cSHAKE DRNG. If the cSHAKE DRNG is initialized and therefore
no current key exists, a zero string of 512 bits size is used.

o seed: The caller-provided seed material that contains entropy.

e personalization string: An arbitrary string that may be used to achieve
domain separation. This string has an arbitrary length and is allowed to
be NULL.

Output:

e K(N + 1): A new ¢cSHAKE DRNG key that is used for instantiating the
c¢SHAKE hash during the next generate or seed phase.

The seeding of the cSHAKE DRNG is performed as follows:

CC BY 4.0. Copyright (C) 2024 Stephan Miiller, All rights reserved. 3

encoded string = encode(personalization string)
K(N + 1) = cSHAKE(N "cSHAKE -DRNG seed",

X = seed || encoded string,
L = 512
S = K(N))

1.1.4 Generating One Block of Random Bit Stream

cSHAKE-Generate (K(N), additional input, length) ->
K(N + 1), random bit stream

Inputs:
e K(N): The current cSHAKE DRNG key of 512 bits size.

e additional input: The optional additional input may be used to further
alter the generated random bit stream.

e length: The length of the random bit stream to be generated in bits. The
length must be smaller or equal to 2 times the cSHAKE rate size minus
512 (equals to 1,576 bits). This ensures that the entire maximum of data
to be squeezed from KECCAK equals to a multiple of full cSHAKE rate
blocks.

Outputs:

e K(N + 1): A new cSHAKE DRNG key that is used for instantiating the
c¢SHAKE hash during the next generate or seed operation.

e random bit stream: Random bit stream of the requested length.

The generation of one random bit stream block is performed as follows:

T(0) = 512 left-most bits of R
T(1) = all right-most bits of R starting with the 512th bit
K(N + 1) = T(0)
random bit stream = T(1)
where:
encoded string = encode(additional input)
R = cSHAKE(N = "cSHAKE-DRNG generate",
X = encoded string,
L = 512 + length,
S = K(N))

CC BY 4.0. Copyright (C) 2024 Stephan Miiller, All rights reserved. 4

1.1.5 Generating Random Bit Stream of Arbitrary Length
Input:

e K(W): The cSHAKE key of 512 bits size generated with the previous gen-
erate or seed operation.

e additional input: The optional additional input may be used to further
alter the generated random bit stream.

o length: The length of the random bit stream to be generated in bits.
Output:

e K(N + 1): A new cSHAKE DRNG key that is used for instantiating the
c¢SHAKE hash during the next generate or seed operation.

e random bit stream: Random bit stream of the requested length.

The generation of the random bit stream is performed as follows:

B 1088 * 2 - 512

N ceil(length / B)

TMP_K (0) = K(N)

R = R(1) [l R(2) |1 R(3) |l ... Il R(N)
random bit stream = first length bits of R
K(N + 1) = TMP_K(N)

where:

(TMP_K (1), R(1))

cSHAKE -Generate (TMP_K (0) ,

additional input, B)
cSHAKE -Generate (TMP_K (1),

additional input, B)

(TMP_K(2), R(2))

(TMP_K (M), R(N))

cSHAKE-Generate (TMP_K(N - 1),
additional input, B)

1.1.6 Rationale

The cSHAKE DRNG key size of 512 bits is chosen based on the following con-
siderations:

¢ During instantiation of cSHAKE the given key size allows the limitation
of KECCAK operations to one: The KECCAK operation is caused by
the ¢SHAKE initialization considering that the length of the key, the
cSHAKE256 customization string and the cSHAKE initialization encod-
ing bytes together are less than the block size of cSHAKE256. This limits
the number of KECCAK operations required based on the input to the
absolute minimum possible based on the cSHAKE specification.

CC BY 4.0. Copyright (C) 2024 Stephan Miiller, All rights reserved. 5

o cSHAKE256 has a security strength of 256 bits. Thus a key size of 256
bits would be sufficient. Yet, considering that due to the fast-key-erasure
mechanism the key is hashed to generate a new key, over time the repeated
hash operation will decrease the amount of entropy in the key. To allow
callers to insert more entropy than the security strength of cSHAKE256
for offsetting this loss of entropy, the key size is set to 512 bits.

The selection of cSHAKE as a DRNG is based on the statement in [4] declaring
Keccak is usable as a pseudorandom function.

1.2 KMAC-based Deterministic Random Number Gener-
ator (KMAC-DRNG)

1.2.1 Notation

The KMAC-hash denotes the KMACXOF256 function [4] instantiated with
¢SHAKE 256 [1]. The KMAC-hash has 4 arguments: the key K, the main input
bit string X, the requested output length L in bits, and an optional customization
bit string S.

The inputs to the KMAC-hash function are specified with references to these
parameters.

1.2.2 Encoding
See section [[.1.2]

1.2.3 Seeding

KMAC-Seeding (K(N), seed, personalization string) ->
K(N + 1)

Inputs:

e K(W): The current KMAC DRNG key used by the current instance of the
KMAC DRNG. If the KMAC DRNG is initialized and therefore no current
key exists, a zero string of 512 bits size is used.

e seed: The caller-provided seed material that contains entropy.

e personalization string: An arbitrary string that may be used to achieve
domain separation. This string has an arbitrary length and is allowed to
be NULL.

Output:

e XK(N + 1): A new KMAC DRNG key that is used for instantiating the
KMAC hash during the next generate or seed phase.

The seeding of the KMAC DRNG is performed as follows:

CC BY 4.0. Copyright (C) 2024 Stephan Miiller, All rights reserved. 6

encoded string = encode(personalization string)

K(N + 1) =

KMAC(K = K(N),

X = seed || encoded string,
L = 512
S = "KMAC-DRNG seed")

1.2.4 Generating One Block of Random Bit Stream

KMAC-Generate (K(N), additional input, length) ->
K(N + 1), random bit stream

Inputs:

e« K(N): The current KMAC DRNG key of 512 bits size.

e additional input: The optional additional input may be used to further
alter the generated random bit stream.

e length: The length of the random bit stream to be generated in bits. The
length must be smaller or equal to 2 times the cSHAKE rate size minus
512 (equals to 1,576 bits). This ensures that the entire maximum of data
to be squeezed from KECCAK equals to a multiple of full cSHAKE rate.

Outputs:

e K(N + 1): A new KMAC DRNG key that is used for instantiating the
KMAC hash during the next generate or seed operation.

o random bit stream: Random bit stream of the requested length.

The generation of one random bit stream block is performed as follows:

T(0) = 512
T(1) = all
K(N + 1) =
random bit

left-most bits of R

right -most bits of R starting with the 512th bit
T (0)

stream = T(1)

where:

encoded string = KMAC-Encode(additional input)

R = KMAC(K
X
L
S

= K(N),

= encoded string,

= 512 + length,

= "KMAC-DRNG generate")

CC BY 4.0. Copyright (C) 2024 Stephan Miiller, All rights reserved. 7

1.2.5 Generating Random Bit Stream of Arbitrary Length

Input:

K(N): The KMAC key of 512 bits size generated with the previous generate
or seed operation.

additional input: The optional additional input may be used to further
alter the generated random bit stream.

length: The length of the random bit stream to be generated in bits.

Output

The

KN + 1): A new KMAC DRNG key that is used for instantiating the
KMAC hash during the next generate or seed operation.

random bit stream: Random bit stream of the requested length.

generation of the random bit stream is performed as follows:

B
N
TMP
R =
ran
K(N

1088 * 2 - 512

ceil(length / B)
_K(0) = K(N)

R(1) |l R(2) |l R(3) [l ... [l R(N)
dom bit stream = first length bits of R
+ 1) = TMP_K(N)

where:

(TMP_K (1), R(1))

(TMP_K(2), R(2))

&fﬁP_K(N), R(N))

KMAC-Generate (TMP_K (0) ,

additional input, B)
KMAC-Generate (TMP_K (1),

additional input, B)

KMAC-Generate (TMP_K(N - 1),
additional input, B)

1.2.6 Rationale

The

KMAC DRNG key size of 512 bits is chosen based on the following consid-

erations:

During instantiation of KMAC the given key size allows the limitation
of KECCAK operations to 2: The first KECCAK operation is due to
the cSHAKE256 initialization. Tne second KECCAK operation is caused
by the KMAC initialization considering that the length of the key, the
cSHAKE256 customization string and the KMAC initialization encoding
bytes together are less than the block size of cSHAKE256. This limits
the number of KECCAK operations required based on the input to the
absolute minimum possible based on the KMAC specification.

CC BY 4.0. Copyright (C) 2024 Stephan Miiller, All rights reserved. 8

o KMAC256 has a security strength of 256 bits. Thus a key size of 256
bits would be sufficient. Yet, considering that due to the fast-key-erasure
mechanism the key is hashed to generate a new key, over time the repeated
hash operation will decrease the amount of entropy in the key. To allow
callers to insert more entropy than the security strength of KMAC256 for
offsetting this loss of entropy, the key size is set to 512 bits. The selection
of KMAC as a DRNG is based on the statement in [4] declaring Keccak
is usable as a pseudorandom function.

1.3 Comparison cSHAKE And KMAC DRNG

The cSHAKE DRNG is completely identical with the exception that the cSHAKE
DRNG uses ¢SHAKE256 and the KMAC DRNG uses KMACXOF256 as cen-
tral functions. The difference of the customization string is irrelevant to the
cryptographic strength of both.

The handling of the key is also very similar:

e The cSHAKE DRNG sets the key as part of the N input - the N and X
input are concatenated and padded by cSHAKE to bring the entire string
into multiples of a cSHAKE block. This data is inserted into the SHAKE
algorithm which implies that the insertion triggers as many KECCAK op-
erations as cSHAKE blocks are present based on the input. The cSHAKE
DRNG data implies that only one cSHAKE block is present and thus one
KECCAK operation is performed.

e The KMAC DRNG sets the key compliant to the KMAC definition. KMAC
sets two well-defined strings as part of the cSHAKE initialization. The
c¢SHAKE initialization concatenates and pads the input strings to bring
the entire string into multiples of a cSHAKE block. This data is inserted
into the SHAKE algorithm which implies that the insertion triggers as
many KECCAK operations as cSHAKE blocks are present on the input.
The KMAC DRNG data implies that only one ¢cSHAKE block is present
and thus one KECCAK operation is performed. In addition, KMAC pads
the key data into a string that is also multiples of a cSHAKE block in size.
Again, this data is inserted into the SHAKE algorithm which again trig-
gers as many KECCAK operations as cSHAKE blocks are present with
the key-based input. The KMAC DRNG specification implies again, that
only one KECCAK operation is performed.

The rationale shows that for both, the cSHAKE DRNG and the KMAC DRNG
the data believed to hold entropy, the key, is inserted into the SHAKE state.
The additional data inserted with the KMAC operation does not contain any
entropy and only mixes the SHAKE state further without affecting the existing
entropy. Therefore, with respect to the entropy management, the cSHAKE
DRNG and the KMAC DRNG are considered equal.

Considering that the cSHAKE DRNG requires only one KECCAK operation
during initialization whereas the KMAC DRNG requires two operations, the

CC BY 4.0. Copyright (C) 2024 Stephan Miiller, All rights reserved. 9

¢SHAKE DRNG requires in total only 2 KECCAK operations for generating a
random bit stream of 1088 - 512 = 576 bits (or less). When comparing this to
the KMAC DRNG, in total 3 KECCAK operations are required for generating
the same 576 bits (or less). This implies that the cSHAKE DRNG requires only
2/3 of the processing time compared to a KMAC DRNG. It is expected that
the majority of all requests will be less than 576 bits, e.g. commonly 256 bits
for symmetric keys.

Thus, the cSHAKE DRNG has a higher performance with a equal entropy
management comparing to the KMAC DRNG.

CC BY 4.0. Copyright (C) 2024 Stephan Miiller, All rights reserved. 10

References

[1] FIPS PUB 202 SHA-3 Standard: Permutation-Based Hash and Extendable-
Output Functions. NIST, August 2015.

[2] Dan Bernstein. Fast-key-erasure random-number generators. July 23, 2017.
Available at https://blog.cr.yp.to/20170723-random.html.

[3] P. Eronen H. Krawczyk. RFC5869 HMAC-based Extract-and-Expand Key
Derivation Function (HKDF). May, 2010.

[4] Ray Perlne John Kelsey, Shu-jen Chang. NIST Special Publication 800-185
SHA-3 Derived Functions: ¢SHAKE, CSHAKE, TupleHash and Parallel-
Hash. December, 2016.

[6] John Kelsey, Stefan Lucks, and Stephan Miiller. Xdrbg: A proposed de-
terministic random bit generator based on any xof. TACR Transactions on
Symmetric Cryptology, 2024(1):5-34, Mar. 2024.

CC BY 4.0. Copyright (C) 2024 Stephan Miiller, All rights reserved. 11

	Deterministic RNG Based on cSHAKE and KMAC
	cSHAKE-based Deterministic Random Number Generator (cSHAKE-DRNG)
	Notation
	Encoding
	Seeding
	Generating One Block of Random Bit Stream
	Generating Random Bit Stream of Arbitrary Length
	Rationale

	KMAC-based Deterministic Random Number Generator (KMAC-DRNG)
	Notation
	Encoding
	Seeding
	Generating One Block of Random Bit Stream
	Generating Random Bit Stream of Arbitrary Length
	Rationale

	Comparison cSHAKE And KMAC DRNG

