
KMAC and cSHAKE AEAD Specification

April 16, 2024

Abstract
This document specifies the cryptographic algorithms of KMAC AEAD

and cSHAKE AEAD. A reference implementation of the algorithms is
given with leancrypto.

Contents
1 KMAC AEAD Algorithm 2

1.1 Introduction . 2
1.2 KMAC-based AEAD Cipher Algorithm 2

1.2.1 Notation . 2
1.2.2 Common Processing of Data 3
1.2.3 Calculating of Message Authentication Tag 3
1.2.4 Encryption Operation . 4
1.2.5 Decryption Operation . 5

1.3 KMAC AEAD Cryptographic Aspects 6

2 cSHAKE AEAD Algorithm 7
2.1 Introduction . 7
2.2 cSHAKE-based AEAD Algorithm 7

2.2.1 Notation . 7
2.2.2 Common Processing of Data 8
2.2.3 Calculating of Message Authentication Tag 8
2.2.4 Encryption Operation . 9
2.2.5 Decryption Operation . 10

2.3 cSHAKE AEAD Cryptographic Aspects 11
2.4 Comparison with KMAC-based AEAD Algorithm 11

1

https://leancrypto.org

1 KMAC AEAD Algorithm
This specification defines a symmetric stream cipher algorithm using the au-
thenticated encryption with additional data (AEAD) approach. This algorithm
can be used to encrypt and decrypt arbitrary user data. The cipher algorithm
uses the KMAC algorithm to generate a key stream which is XORed with ei-
ther the plaintext (encryption) or ciphertext (decryption) data. The KMAC is
initialized with the user-provided key and the user-provided IV. In addition, a
second KMAC instance is initialized which calculates a keyed-message digest of
the ciphertext to create a message authentication tag. This message authenti-
cation tag is used during decryption to verify the integrity of the ciphertext.

1.1 Introduction
This specification defines a symmetric stream cipher algorithm using the au-
thenticated encryption with additional data (AEAD) approach. This algorithm
can be used to encrypt and decrypt arbitrary user data.

The base of the algorithm is the generation of a key stream using KMAC
which is XORed with the plaintext for the encryption operation, or with the
ciphertext for the decryption operation.

The algorithm also applies an Encrypt-Then-MAC by calculating a message
authentication tag using KMAC over the ciphertext. During decryption, this
calculated message authentication tag is compared with the message authen-
tication tag obtained during the encryption operation. If both values show a
mismatch, the authentication fails and the decryption operation is terminated.
Only when both message authentication tags are identical the decryption oper-
ation completes successfully and returns the decrypted message.

The key along with the IV are used to initialize the KMAC algorithm for
generating the key stream. The first output block from the KMAC is used
to initialize the authenticating KMAC instance used to calculate the message
authentication tag.

The size of the key is defined to be 256 bits when using KMAC-256. The
size of the IV can be selected by the caller. The algorithm supports any IV size,
including having no IV.

As part of the authentication, the algorithm allows the addition of additional
authenticated data (AAD) of arbitrary size. This AAD is inserted into the
authentication KMAC instance during calculating the message authentication
tag.

1.2 KMAC-based AEAD Cipher Algorithm
1.2.1 Notation

The KMAC-hash denotes the KMACXOF256 function [1]. The KMAC-hash
has 4 arguments: the key K, the main input bit string X, the requested output
length L in bits, and an optional customization bit string S.

CC BY 4.0. Copyright (C) 2024 Stephan Müller, All rights reserved. 2

The inputs to the KMAC-hash function are specified with references to these
parameters.

1.2.2 Common Processing of Data

KMAC -Crypt(key , IV , input data) ->
output data , auth key

Inputs:

• key: The caller-provided key of size 256 bits

• IV: The caller-provided initialization vector. The IV can have any size
including an empty bit-string. See section 1.3 for a discussion of the IV,
however.

• input data: The caller-provided input data - in case of encryption, the
caller provides the plaintext data, in case of decryption, caller provides
the ciphertext data.

Outputs:

• output data: The resulting data - in case of encryption, the ciphertext
is produced, in case of decryption, the plaintext is returned.

• auth key: The key that is used for the KMAC operation calculating the
message authentication tag.

The common processing of data is performed as follows:

input length = size of input data in bits
KS = KMAC(K = key ,

X = "",
L = 256 bits + input length ,
S = IV)

auth key = 256 left -most bits of KS
KS crypt = all right -most bits of KS starting with the 256 th bit
output data = input data XOR KS crypt

1.2.3 Calculating of Message Authentication Tag

KMAC -Auth(auth key , AAD , ciphertext , taglen) ->
tag

Input:

• auth key: The key that is used for the KMAC operation calculating the
message authentication tag.

CC BY 4.0. Copyright (C) 2024 Stephan Müller, All rights reserved. 3

• AAD: The caller-provided additional authenticated data. The AAD can
have any size including an empty bit-string.

• ciphertext: The ciphertext obtained from the encryption operation or
provided to the decryption operation.

• taglen: The length of the message authentication tag to be generated.

Output:

• tag: The message authentication tag that can be exchanged with the
recipient over insecure channels.

The calculation of the message authentication tag is performed as follows:

tag = KMAC(K = auth key ,
X = AAD || ciphertext ,
L = taglen ,
S = "")

Note, the implementation must ensure that after generating the message
authentication tag, the KMAC state is re-initialized with the authentication
key to allow multiple successive encryption or decryption operations. Each
ciphertext used with an encryption / decryption operation must be be processed
with the given KMAC invocation. This is required as otherwise the re-invocation
of the encryption / decryption operation causes the KMAC state to be used in
an undefined way, i.e. invoking the Keccak absorb function after the Keccak
squeeze operation was invoked.

1.2.4 Encryption Operation

KMAC - Encrypt (key , IV , plaintext , AAD , taglen) ->
ciphertext , tag

Input:

• key: The caller-provided key of size 256 bits

• IV: The caller-provided initialization vector. The IV can have any size
including an empty bit-string.

• plaintext: The caller-provided plaintext data.

• AAD: The caller-provided additional authenticated data.

• taglen: The length of the message authentication tag to be generated.

Output:

• ciphertext: The ciphertext that can exchanged with the recipient over
insecure channels.

CC BY 4.0. Copyright (C) 2024 Stephan MÃŒller, All rights reserved. 4

• tag: The message authentication tag that can be exchanged with the
recipient over insecure channels.

The encryption operation is performed as follows:

ciphertext , auth key = KMAC -Crypt(key , IV , plaintext)
tag = KMAC -Auth(auth key , AAD , ciphertext , taglen)

1.2.5 Decryption Operation

KMAC - Decrypt (key , IV , ciphertext , AAD , tag) ->
plaintext , authentication result

Input:

• key: The caller-provided key of size 256 bits

• IV: The caller-provided initialization vector. The IV can have any size
including an empty bit-string.

• ciphertext: The ciphertext that was received from the send over insecure
channels.

• AAD: The caller-provided additional authenticated data.

• tag: The message authentication tag that was received from the send over
insecure channels.

Output:

• plaintext: The plaintext of the data.

• authentication result: A boolean indicator specifying whether the au-
thentication was successful. If it was unsuccessful the caller shall reject
the ciphertext.

The decryption operation is performed as follows:

plaintext , auth key = KMAC -Crypt(key , IV , ciphertext)
taglen = size of tag
new_tag = KMAC -Auth(auth key , AAD , ciphertext , taglen)
if (new_tag == tag)

authentication result = success
else

authentication result = failure

If the authentication result indicates a failure, the result of the decryption
operation SHALL be discarded.

CC BY 4.0. Copyright (C) 2024 Stephan Müller, All rights reserved. 5

1.3 KMAC AEAD Cryptographic Aspects
The KMAC AEAD algorithm is a stream cipher which uses the XOR-construction
method to perform encryption and decryption. This method is susceptible to at-
tacks when the key stream is identical between different encryption operations.
This this case, the key stream can be trivially removed and thus a decryption
of the data is possible as follows:

ciphertext 1 = plaintext 1 XOR KS
ciphertext 2 = plaintext 2 XOR KS
ciphertext 1 XOR ciphertext 2 =

(plaintext 1 XOR KS) XOR (plaintext 2 XOR KS) =
plaintext 1 XOR plaintext 2

Thus, the security of the KMAC algorithm is based on the property that the
key stream KS is unique for different encryption operations. The key stream
is derived from the key and the IV using KMAC. In common use cases, the
key may not be able to be modified. Yet, the IV can be modified. Common
protocols allow the generation of a new IV during encryption and transmit the
IV to the decryptor. Thus, the IV can be used as a diversifier to for the different
encryption operations to obtain a different key stream.

As the KMAC algorithm’s IV size is unspecified in size, the KMAC algo-
rithm can handle any size that may be pre-defined by the use case or protocol
consuming the KMAC AEAD algorithm.

Considering the avalanche effect of the underlying KECCAK algorithm, even
a small IV may result in a completely different keystream rendering the afore-
mentioned attack impossible.

The IV is not required to be a confidentially-protected value. It can be
communicated in plaintext to the decryptor. This is due to the fact that the
IV is used together with the key to generate the key stream using KMAC.
An attacker is not able to construct either the key or the key stream by only
possessing the IV. Furthermore, the key is defined to possess a cryptographic
meaningful entropy (see section 2.3) which implies that the IV does not need to
deliver additional entropy to ensure the strength of the KMAC AEAD algorithm.

It is permissible that the IV is generated either by a random number genera-
tor or using a deterministic construction method. The only requirement is that
the probability in generating a key / IV collision is insignificantly low. This
implies that considering the IV is only a diversifier for the key stream, and the
fact that the IV is not required to be private, the random number generator is
not required to possess a cryptographic meaningful strength.

The selection of KMAC for generating the keystream is based on the state-
ment in [1] declaring Keccak is usable as a pseudorandom function.

The approach of Encrypt-Then-MAC is selected based on the analysis of [2]
table 3 considering on the finding that the MAC algorithm of KMAC is strongly
unforgeable.

CC BY 4.0. Copyright (C) 2024 Stephan Müller, All rights reserved. 6

2 cSHAKE AEAD Algorithm
This specification defines a symmetric stream cipher algorithm using the au-
thenticated encryption with additional data (AEAD) approach. This algorithm
can be used to encrypt and decrypt arbitrary user data. The cipher algorithm
uses the cSHAKE algorithm to generate a key stream which is XORed with
either the plaintext (encryption) or ciphertext (decryption) data. The cSHAKE
is initialized with the user-provided key and the user-provided IV. In addition, a
second cSHAKE instance is initialized which calculates a keyed-message digest
of the ciphertext to create a message authentication tag. This message authen-
tication tag is used during decryption to verify the integrity of the ciphertext.

2.1 Introduction
This specification defines a symmetric stream cipher algorithm using the au-
thenticated encryption with additional data (AEAD) approach. This algorithm
can be used to encrypt and decrypt arbitrary user data.

The base of the algorithm is the generation of a key stream using cSHAKE
which is XORed with the plaintext for the encryption operation, or with the
ciphertext for the decryption operation.

The algorithm also applies an Encrypt-Then-MAC by calculating a message
authentication tag using cSHAKE over the ciphertext. During decryption, this
calculated message authentication tag is compared with the message authen-
tication tag obtained during the encryption operation. If both values show a
mismatch, the authentication fails and the decryption operation is terminated.
Only when both message authentication tags are identical the decryption oper-
ation completes successfully and returns the decrypted message.

The key along with the IV are used to initialize the cSHAKE algorithm for
generating the key stream. The first output block from the cSHAKE is used
to initialize the authenticating cSHAKE instance used to calculate the message
authentication tag.

The size of the key is defined to be 256 bits when using cSHAKE-256. The
size of the IV can be selected by the caller. The algorithm supports any IV size,
including having no IV.

As part of the authentication, the algorithm allows the addition of additional
authenticated data (AAD) of arbitrary size. This AAD is inserted into the
authentication cSHAKE instance during calculating the message authentication
tag.

2.2 cSHAKE-based AEAD Algorithm
2.2.1 Notation

The cSHAKE-hash denotes the cSHAKE256 function [1]. The cSHAKE-hash
has 4 arguments: the main input bit string X, the requested output length L in
bits, a function-name bit string, and an optional customization bit string S.

CC BY 4.0. Copyright (C) 2024 Stephan Müller, All rights reserved. 7

The inputs to the cSHAKE-hash function are specified with references to
these parameters.

2.2.2 Common Processing of Data

cSHAKE -Crypt(key , IV , input data) ->
output data , auth key

Inputs:

• key: The caller-provided key of size 256 bits

• IV: The caller-provided initialization vector. The IV can have any size
including an empty bit-string. See section 2.3 for a discussion of the IV,
however.

• input data: The caller-provided input data - in case of encryption, the
caller provides the plaintext data, in case of decryption, caller provides
the ciphertext data.

Outputs:

• output data: The resulting data - in case of encryption, the ciphertext
is produced, in case of decryption, the plaintext is returned.

• auth key: The key that is used for the cSHAKE operation calculating
the message authentication tag.

The common processing of data is performed as follows:

input length = size of input data in bits
KS = cSHAKE (N = "cSHAKE -AEAD crypt",

X = IV ,
L = 256 bits + input length ,
S = key)

auth key = 256 left -most bits of KS
KS crypt = all right -most bits of KS starting with the 256 th bit
output data = input data XOR KS crypt

2.2.3 Calculating of Message Authentication Tag

cSHAKE -Auth(auth key , AAD , ciphertext , taglen) ->
tag

Input:

• auth key: The key that is used for the cSHAKE operation calculating
the message authentication tag.

CC BY 4.0. Copyright (C) 2024 Stephan Müller, All rights reserved. 8

• AAD: The caller-provided additional authenticated data. The AAD can
have any size including an empty bit-string.

• ciphertext: The ciphertext obtained from the encryption operation or
provided to the decryption operation.

• taglen: The length of the message authentication tag to be generated.

Output:

• tag: The message authentication tag that can be exchanged with the
recipient over insecure channels.

The calculation of the message authentication tag is performed as follows:

tag = cSHAKE (N = "cSHAKE -AEAD auth",
X = AAD || ciphertext ,
L = taglen ,
S = auth key)

Note, the implementation must ensure that after generating the message au-
thentication tag, the cSHAKE state is re-initialized with the authentication key
to allow multiple successive encryption or decryption operations. Each cipher-
text used with an encryption / decryption operation must be be processed with
the given cSHAKE invocation. This is required as otherwise the re-invocation
of the encryption / decryption operation causes the cSHAKE state to be used
in an undefined way, i.e. invoking the Keccak absorb function after the Keccak
squeeze operation was invoked.

2.2.4 Encryption Operation

cSHAKE - Encrypt (key , IV , plaintext , AAD , taglen) ->
ciphertext , tag

Input:

• key: The caller-provided key of size 256 bits

• IV: The caller-provided initialization vector. The IV can have any size
including an empty bit-string.

• plaintext: The caller-provided plaintext data.

• AAD: The caller-provided additional authenticated data.

• taglen: The length of the message authentication tag to be generated.

Output:

• ciphertext: The ciphertext that can exchanged with the recipient over
insecure channels.

CC BY 4.0. Copyright (C) 2024 Stephan MÃŒller, All rights reserved. 9

• tag: The message authentication tag that can be exchanged with the
recipient over insecure channels.

The encryption operation is performed as follows:

ciphertext , auth key = cSHAKE -Crypt(key , IV , plaintext)
tag = cSHAKE -Auth(auth key , AAD , ciphertext , taglen)

2.2.5 Decryption Operation

cSHAKE - Decrypt (key , IV , ciphertext , AAD , tag) ->
plaintext , authentication result

Input:

• key: The caller-provided key of size 256 bits

• IV: The caller-provided initialization vector. The IV can have any size
including an empty bit-string.

• ciphertext: The ciphertext that was received from the send over insecure
channels.

• AAD: The caller-provided additional authenticated data.

• tag: The message authentication tag that was received from the send over
insecure channels.

Output:

• plaintext: The plaintext of the data.

• authentication result: A boolean indicator specifying whether the au-
thentication was successful. If it was unsuccessful the caller shall reject
the ciphertext.

The decryption operation is performed as follows:

plaintext , auth key = cSHAKE -Crypt(key , IV , ciphertext)
taglen = size of tag
new_tag = cSHAKE -Auth(auth key , AAD , ciphertext , taglen)
if (new_tag == tag)

authentication result = success
else

authentication result = failure

If the authentication result indicates a failure, the result of the decryption
operation SHALL be discarded.

CC BY 4.0. Copyright (C) 2024 Stephan Müller, All rights reserved. 10

2.3 cSHAKE AEAD Cryptographic Aspects
The cSHAKE AEAD algorithm susceptible to the same issues as the KMAC-
AEAD algorithm outlined in section 1.3.

2.4 Comparison with KMAC-based AEAD Algorithm
The cSHAKE cipher is completely identical to the KMAC cipher with the ex-
ception that the cSHAKE cipher uses cSHAKE256 and the KMAC cipher uses
KMACXOF256 as central functions. The difference of the cSHAKE customiza-
tion string applied by KMAC compared to cSHAKE is irrelevant to the crypto-
graphic strength of both.

The handling of the key is also very similar:

• The cSHAKE cipher sets the key as part of the N input - the N and X
input are concatenated and padded by cSHAKE to bring the entire string
into multiples of a cSHAKE block. This data is inserted into the SHAKE
algorithm which implies that the insertion triggers as many KECCAK op-
erations as cSHAKE blocks are present based on the input. The cSHAKE
DRNG data implies that only one cSHAKE block is present and thus one
KECCAK operation is performed.

• The KMAC cipher sets the key compliant to the KMAC definition. KMAC
sets two well-defined strings as part of the cSHAKE initialization. The
cSHAKE initialization concatenates and pads the input strings to bring
the entire string into multiples of a cSHAKE block. This data is inserted
into the SHAKE algorithm which implies that the insertion triggers as
many KECCAK operations as cSHAKE blocks are present on the input.
The KMAC cipher key data implies that only one cSHAKE block is present
and thus one KECCAK operation is performed. In addition, KMAC pads
the key data into a string that is also multiples of a cSHAKE block in size.
Again, this data is inserted into the SHAKE algorithm which again triggers
as many KECCAK operations as cSHAKE blocks are present with the
key-based input. The KMAC-based AEAD cipher algorithm specification
implies again, that only one KECCAK operation is performed.

The rationale shows that for both, the cSHAKE cipher and the KMAC cipher,
the key, is inserted into the SHAKE state. The additional data inserted with
the KMAC operation does not contain any entropy and only mixes the SHAKE
state further without affecting the existing entropy provided with the key or
diminish the information inserted with the IV. Therefore, with respect to the
security strength, the cSHAKE cipher and the KMAC cipher are considered
equal.

Considering that the cSHAKE cipher requires only one KECCAK opera-
tion during initialization whereas the KMAC cipher requires two operations,
the cSHAKE cipher requires less KECCAK operations for processing the same
amount of data.

CC BY 4.0. Copyright (C) 2024 Stephan Müller, All rights reserved. 11

Thus, the cSHAKE cipher has a higher performance with a equal entropy
management comparing to the KMAC cipher.

CC BY 4.0. Copyright (C) 2024 Stephan Müller, All rights reserved. 12

References
[1] Ray Perlne John Kelsey, Shu-jen Chang. NIST Special Publication 800-185

SHA-3 Derived Functions: cSHAKE, CSHAKE, TupleHash and Parallel-
Hash. December, 2016.

[2] Chanathip Namprempre Mihir Bellare. Authenticated Encryption: Relations
among Notions and Analysis of the Generic Composition Paradigm.

CC BY 4.0. Copyright (C) 2024 Stephan Müller, All rights reserved. 13

	KMAC AEAD Algorithm
	Introduction
	KMAC-based AEAD Cipher Algorithm
	Notation
	Common Processing of Data
	Calculating of Message Authentication Tag
	Encryption Operation
	Decryption Operation

	KMAC AEAD Cryptographic Aspects

	cSHAKE AEAD Algorithm
	Introduction
	cSHAKE-based AEAD Algorithm
	Notation
	Common Processing of Data
	Calculating of Message Authentication Tag
	Encryption Operation
	Decryption Operation

	cSHAKE AEAD Cryptographic Aspects
	Comparison with KMAC-based AEAD Algorithm

